کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4323492 1292348 2016 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Chronic phenytoin treatment reduces rat carotid body chemosensory responses to acute hypoxia
ترجمه فارسی عنوان
درمان فیناستوئین مزمن باعث کاهش پاسخ کلامیدیا به هیپوکسی حاد می شود
موضوعات مرتبط
علوم زیستی و بیوفناوری علم عصب شناسی علوم اعصاب (عمومی)
چکیده انگلیسی


• Chronic phenytoin treatment has no effect on normoxic carotid chemosensory frequency discharge.
• Hypoxia-induced chemoafferent responses are markedly reduced by chronic phenytoin treatment.
• Hyperoxia-induced responses are largely unaffected by chronic phenytoin treatment.

Ventilation is peripherally controlled by afferent activity arising from the peripheral chemoreceptors. In the rat, chemosensory activity is conveyed to the central nervous system through axons of neurons located in the nodose-petrosal-jugular-complex. These neurons have distinct electrophysiological properties, including a persistent Na+ current. Acute blockade of this current with phenytoin and other anti-epileptic drugs reduces normoxic chemosensory activity and responses to acute hypoxia. However, because anti-epileptic therapy is prolonged and there is no information on the effects of chronic phenytoin treatment on peripheral chemosensory activity, we studied the effects of long-lasting phenytoin treatment (~25 days) on afferent chemosensory activity, on a wide range of oxygen inspiratory fractions. Osmotic pumps containing dissolved phenytoin (166 mg/mL) or vehicle (daily flow: 60 µL) were implanted subcutaneously in male adult Sprague Dawley rats. At the end of the treatment, the animals were anesthetized and carotid sinus nerve activity was recorded in vivo. Afferent chemosensory activity in normoxia was not significantly different between control (71.2±2.2 Hz) and phenytoin treated (95.4±2.1 Hz) rats. In contrast, carotid body chemosensory responses to acute hypoxic challenges were markedly reduced in phenytoin treated rats, specifically in the lowest part of the hypoxic range (control 133.5±18.0 Hz vs phenytoin treated 50.2±29.4, at 5% FIO2). Chronic phenytoin treatment severely impaired the chemosensory responses to acute hypoxia, suggesting that long-term phenytoin treatment in patients may result in a reduced peripheral respiratory drive together with a reduction in the respiratory responses to hypoxic challenges.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Brain Research - Volume 1649, Part A, 15 October 2016, Pages 38–43
نویسندگان
, , ,