کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4326972 1614106 2010 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Prestin forms oligomer with four mechanically independent subunits
موضوعات مرتبط
علوم زیستی و بیوفناوری علم عصب شناسی علوم اعصاب (عمومی)
پیش نمایش صفحه اول مقاله
Prestin forms oligomer with four mechanically independent subunits
چکیده انگلیسی

Prestin is the motor protein of cochlear outer hair cells (OHCs) with the unique capability of performing direct, rapid, and reciprocal electromechanical conversion. Prestin consists of 744 amino acids with a molecular mass of ∼ 81.4 kDa. The predicted membrane topology and molecular mass of a single prestin molecule appear inadequate to account for the size of intramembrane particles (IMPs) expressed in the OHC membrane. Although recent biochemical evidence suggests that prestin forms homo-oligomers, most likely as a tetramer, the oligomeric structure of prestin in OHCs remains unclear. We obtained the charge density of prestin in the gerbil OHCs by measuring their nonlinear capacitance (NLC). The average charge density (22,608 μm−2) measured was four times the average IMP density (5686 μm−2) reported in the freeze-fracture study. This suggests that each IMP contains four prestin molecules, based on the general notion that each prestin transfers a single elementary charge. We subsequently compared the voltage dependency and the values of slope factor of NLC and somatic motility simultaneously measured from the same OHCs to determine whether NLC and motility are fully coupled and how prestin subunits function within the tetramer. We showed that the voltage dependency and slope factors of NLC and motility were not statistically different, suggesting that NLC and motility are fully coupled. The fact that the slope factor is the same between NLC and motility suggests that each prestin monomer in the tetramer is in parallel, each interacting independently with cytoplasmic or other partners to facilitate the mechanical response.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Brain Research - Volume 1333, 28 May 2010, Pages 28–35
نویسندگان
, , , ,