کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4329402 1614213 2008 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Controlled pulse delivery of electrical stimulation differentially reduces epileptiform activity in Mg2+-free-treated hippocampal slices
موضوعات مرتبط
علوم زیستی و بیوفناوری علم عصب شناسی علوم اعصاب (عمومی)
پیش نمایش صفحه اول مقاله
Controlled pulse delivery of electrical stimulation differentially reduces epileptiform activity in Mg2+-free-treated hippocampal slices
چکیده انگلیسی

Electrical stimulation for applications in epilepsy has been attempted in multiple brain re4gions using high- or low-frequency stimulation protocols. Data suggest that specific frequencies may have more benefit at controlling seizure activity. To this end, investigators have tested low-frequency stimulation (LFS) protocols (0.1 to 25Hz) in both animal models and in human epileptic patients and reported reduced epileptiform synchronization, afterdischarge thresholds, and seizure activity in general. Collectively, these studies imply that LFS may have benefit in reducing epileptiform activity, however, the effectiveness of various electrical parameters still needs to be determined in specific targets. This study aimed to systematically control the total number of stimulation pulses when using primarily LFS protocols (0.5, 0.75, 1, 2, 5, 10, and 25Hz) delivered for the suppression of seizure-like activity in the hippocampal brain slice using a Mg2+-free model of epilepsy. Fifty Hz was also tested as a reference higher frequency protocol. Regulating the total number of pulses also controlled the amount of electrical work delivered. Of the LFS protocols tested, 0.5Hz, and 1Hz were optimal and significantly (p < 0.05) reduced several measures of epileptiform activity. However, the higher frequency protocol, 50Hz was similarly effective at significantly (p < 0.05) suppressing several aspects of epileptiform activity (but not for reduction of population-spike amplitude). The data show that these protocols, which had a controlled number of pulses differentially reduced epileptiform activity in our model where increasing the frequency of stimulation did not result in increased attenuation.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Brain Research - Volume 1226, 21 August 2008, Pages 163–172
نویسندگان
, , , ,