کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4331158 | 1614295 | 2007 | 8 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Extracellular glutamine is a critical modulator for regulatory volume increase in human glioma cells
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
علوم زیستی و بیوفناوری
علم عصب شناسی
علوم اعصاب (عمومی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Mammalian cells regulate their volume to prevent unintentional changes in intracellular signaling, cell metabolism, and DNA integrity. Intentional cell volume changes occur as cells undergo proliferation, apoptosis, or cell migration. To regulate cell volume, cells use channels and transport systems to flux osmolytes across the plasma membrane followed by the obligatory movement of water. While essentially all cells are capable of regulatory volume decrease (RVD), regulatory volume increase (RVI) mechanisms have only been reported in some cell types. In this investigation, we used human glioma cells as a model system to determine conditions necessary for RVI. When exposed to hyperosmotic conditions through the addition of 30Â mosM NaCl or sucrose, D54-MG and U251 glioma cell lines and glioma cells from acute patient biopsies shrunk transiently but were able to fully recover their original cell volume within 40-70Â min. This ability was highly temperature sensitive and absolutely required the presence of low millimolar concentrations of l-glutamine in the extracellular solution. Other known substrates of glutamine transporters such as methyl-amino isobutyric acid (MeAIB), alanine, and threonine were unable to support RVI. The ability of cells to undergo RVI also required the presence of Na+, K+, and Clâ and was inhibited by the NKCC inhibitor, bumetanide, consistent with the involvement of a Na+/K+/2Clâ cotransporter (NKCC). Moreover, the expression of NKCC1 was demonstrated by Western blot. We concluded that regulatory volume increase in human glioma cells occurs through the uptake of Na+, K+, and Clâ by NKCC1 and is modulated by the presence of glutamine.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Brain Research - Volume 1144, 4 May 2007, Pages 231-238
Journal: Brain Research - Volume 1144, 4 May 2007, Pages 231-238
نویسندگان
Nola Jean Ernest, Harald Sontheimer,