کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4334413 1294941 2007 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Efficient reinforcement learning: computational theories, neuroscience and robotics
موضوعات مرتبط
علوم زیستی و بیوفناوری علم عصب شناسی علوم اعصاب (عمومی)
پیش نمایش صفحه اول مقاله
Efficient reinforcement learning: computational theories, neuroscience and robotics
چکیده انگلیسی

Reinforcement learning algorithms have provided some of the most influential computational theories for behavioral learning that depends on reward and penalty. After briefly reviewing supporting experimental data, this paper tackles three difficult theoretical issues that remain to be explored. First, plain reinforcement learning is much too slow to be considered a plausible brain model. Second, although the temporal-difference error has an important role both in theory and in experiments, how to compute it remains an enigma. Third, function of all brain areas, including the cerebral cortex, cerebellum, brainstem and basal ganglia, seems to necessitate a new computational framework. Computational studies that emphasize meta-parameters, hierarchy, modularity and supervised learning to resolve these issues are reviewed here, together with the related experimental data.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Current Opinion in Neurobiology - Volume 17, Issue 2, April 2007, Pages 205–212
نویسندگان
, ,