کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4334545 1294947 2008 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Spiking networks for Bayesian inference and choice
موضوعات مرتبط
علوم زیستی و بیوفناوری علم عصب شناسی علوم اعصاب (عمومی)
پیش نمایش صفحه اول مقاله
Spiking networks for Bayesian inference and choice
چکیده انگلیسی

Systems neuroscience traditionally conceptualizes a population of spiking neurons as merely encoding the value of a stimulus. Yet, psychophysics has revealed that people take into account stimulus uncertainty when performing sensory or motor computations and do so in a nearly Bayes-optimal way. This suggests that neural populations do not encode just a single value but an entire probability distribution over the stimulus. Several such probabilistic codes have been proposed, including one that utilizes the structure of neural variability to enable simple neural implementations of probabilistic computations such as optimal cue integration. This approach provides a quantitative link between Bayes-optimal behaviors and specific neural operations. It allows for novel ways to evaluate probabilistic codes and for predictions for physiological population recordings.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Current Opinion in Neurobiology - Volume 18, Issue 2, April 2008, Pages 217–222
نویسندگان
, , ,