کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4335204 | 1295134 | 2012 | 6 صفحه PDF | دانلود رایگان |

The blood–brain barrier (BBB) is increasingly being recognized as a site of special scientific importance. Numerous models of the BBB have been constructed over the past years with increasingly mechanistic studies of fundamental questions of cell biology and neuroimmunology. However, there has been a limiting factor of not being able to perform real-time studies of BBB function utilizing 3D models. Equally, real-time models have been limited mainly to 2D models comprised solely of endothelial cells (ECs). To measure changes in the electrical resistance across a BBB model, when adding inflammatory or stem cells which will interact with co-cultured glial cells has, to date, been beyond the capabilities of models.We have cultured an inverted BBB model with ECs on electrodes which are on the lower surface of xCELLigence Cell Invasion Migration plates. Glial cells were cultured in the basal well with foot processes extending through the filters to make contact with the ECs. SIV-infected macrophages decreased electrical resistance of the EC monolayer when added to the “parenchymal” face of the model.We present a novel inverted blood–brain barrier model that allow real time analyses of endothelial cell adhesion during modeled neuroinflammation.
► Inverted model allows contact of inflammatory cells with glia.
► Lentiviral-infected macrophages induce BBB disruption.
► Presence of macrophages alone is not sufficient for BBB disruption.
► BBB disruption is measured in real time.
Journal: Journal of Neuroscience Methods - Volume 207, Issue 1, 30 May 2012, Pages 91–96