کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4335429 1295154 2011 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Time-varying model identification for time–frequency feature extraction from EEG data
موضوعات مرتبط
علوم زیستی و بیوفناوری علم عصب شناسی علوم اعصاب (عمومی)
پیش نمایش صفحه اول مقاله
Time-varying model identification for time–frequency feature extraction from EEG data
چکیده انگلیسی

A novel modelling scheme that can be used to estimate and track time-varying properties of nonstationary signals is investigated. This scheme is based on a class of time-varying AutoRegressive with an eXogenous input (TVARX) models where the associated time-varying parameters are represented by multi-wavelet basis functions. The orthogonal least square (OLS) algorithm is then applied to refine the model parameter estimates of the TVARX model. The main features of the multi-wavelet approach is that it enables smooth trends to be tracked but also to capture sharp changes in the time-varying process parameters. Simulation studies and applications to real EEG data show that the proposed algorithm can provide important transient information on the inherent dynamics of nonstationary processes.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Neuroscience Methods - Volume 196, Issue 1, 15 March 2011, Pages 151–158
نویسندگان
, , , ,