کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4337137 | 1614658 | 2006 | 8 صفحه PDF | دانلود رایگان |

An accurate and computationally efficient means of classifying electromyographic (EMG) signal patterns has been the subject of considerable research effort in recent years. Quantitative analysis of EMG signals provides an important source of information for the diagnosis of neuromuscular disorders. Following the recent development of computer-aided EMG equipment, different methodologies in the time domain and frequency domain have been followed for quantitative analysis. In this study, feedforward error backpropagation artificial neural networks (FEBANN) and wavelet neural networks (WNN) based classifiers were developed and compared in relation to their accuracy in classification of EMG signals. In these methods, we used an autoregressive (AR) model of EMG signals as an input to classification system. A total of 1200 MUPs obtained from 7 normal subjects, 7 subjects suffering from myopathy and 13 subjects suffering from neurogenic disease were analyzed. The success rate for the WNN technique was 90.7% and for the FEBANN technique 88%. The comparisons between the developed classifiers were primarily based on a number of scalar performance measures pertaining to the classification. The WNN-based classifier outperformed the FEBANN counterpart. The proposed WNN classification may support expert decisions and add weight to EMG differential diagnosis.
Journal: Journal of Neuroscience Methods - Volume 156, Issues 1–2, 30 September 2006, Pages 360–367