کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4337290 1614745 2016 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A support vector machine-based method to identify mild cognitive impairment with multi-level characteristics of magnetic resonance imaging
ترجمه فارسی عنوان
یک روش مبتنی بر بردار پشتیبانی برای شناسایی اختلالات شناختی خفیف با ویژگی های چند سطح از تصویربرداری رزونانس مغناطیسی
موضوعات مرتبط
علوم زیستی و بیوفناوری علم عصب شناسی علوم اعصاب (عمومی)
چکیده انگلیسی


• Proposed a valid SVM-based method to identify MCI using HE, ALFF, ReHo and GMD.
• 96.67% accuracy was achieved for identifying MCI from NCs.
• Single feature parameter could just obtain a maximum accuracy of 90.32%.
• Combined features could significantly improve the classification performance.
• The abnormal brain regions in MCI mainly involve several default mode regions.

Mild cognitive impairment (MCI) represents a transitional state between normal aging and Alzheimer’s disease (AD). Non-invasive diagnostic methods are desirable to identify MCI for early therapeutic interventions. In this study, we proposed a support vector machine (SVM)-based method to discriminate between MCI patients and normal controls (NCs) using multi-level characteristics of magnetic resonance imaging (MRI). This method adopted a radial basis function (RBF) as the kernel function, and a grid search method to optimize the two parameters of SVM. The calculated characteristics, i.e., the Hurst exponent (HE), amplitude of low-frequency fluctuations (ALFF), regional homogeneity (ReHo) and gray matter density (GMD), were adopted as the classification features. A leave-one-out cross-validation (LOOCV) was used to evaluate the classification performance of the method. Applying the proposed method to the experimental data from 29 MCI patients and 33 healthy subjects, we achieved a classification accuracy of up to 96.77%, with a sensitivity of 93.10% and a specificity of 100%, and the area under the curve (AUC) yielded up to 0.97. Furthermore, the most discriminative features for classification were found to predominantly involve default-mode regions, such as hippocampus (HIP), parahippocampal gyrus (PHG), posterior cingulate gyrus (PCG) and middle frontal gyrus (MFG), and subcortical regions such as lentiform nucleus (LN) and amygdala (AMYG). Therefore, our method is promising in distinguishing MCI patients from NCs and may be useful for the diagnosis of MCI.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neuroscience - Volume 331, 7 September 2016, Pages 169–176
نویسندگان
, , , , , , , ,