کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4337811 1614824 2013 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The neuroprotective role and mechanisms of TERT in neurons with oxygen-glucose deprivation
موضوعات مرتبط
علوم زیستی و بیوفناوری علم عصب شناسی علوم اعصاب (عمومی)
پیش نمایش صفحه اول مقاله
The neuroprotective role and mechanisms of TERT in neurons with oxygen-glucose deprivation
چکیده انگلیسی
Telomerase reverse transcriptase (TERT) is reported to protect neurons from apoptosis induced by various stresses including hypoxia-ischemia (HI). However, the mechanisms by which TERT exerts its anti-apoptotic role in neurons with HI injury remain unclear. In this study, we examined the protective role and explored the possible mechanisms of TERT in neurons with HI injury in vitro. Primary cultured neurons were exposed to oxygen and glucose deprivation (OGD) for 3 h followed by reperfusion to mimic HI injury in vivo. Plasmids containing TERT antisense, sense nucleotides, or mock were transduced into neurons at 48 h before OGD. Expression and distribution of TERT were measured by immunofluorescence labeling and western blot. The expression of cleaved caspase 3 (CC3), Bcl-2 and Bax were detected by western blot. Neuronal apoptosis was measured with terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL). The mitochondrial reactive oxygen species (ROS) were measured by MitoSOX Red staining. Fluorescent probe JC-1 was used to measure the mitochondrial membrane potential (ΔΨm). We found that TERT expression increased at 8 h and peaked at 24 h in neurons after OGD. CC3 expression and neuronal apoptosis were induced and peaked at 24 h after OGD. TERT inhibition significantly increased CC3 expression and neuronal apoptosis after OGD treatment. Additionally, TERT inhibition decreased the expression ratio of Bcl-2/Bax, and enhanced ROS production and ΔΨm dissipation after OGD. These data suggest that TERT plays a neuroprotective role via anti-apoptosis in neurons after OGD. The underlying mechanisms may be associated with regulating Bcl-2/Bax expression ratio, attenuating ROS generation, and increasing mitochondrial membrane potential.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neuroscience - Volume 252, 12 November 2013, Pages 346-358
نویسندگان
, , , , , , , , ,