کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4337920 1614834 2013 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Neuroprotection induced by N-acetylcysteine against cytosolic glutathione depletion-induced Ca2+ influx in dorsal root ganglion neurons of mice: Role of TRPV1 channels
موضوعات مرتبط
علوم زیستی و بیوفناوری علم عصب شناسی علوم اعصاب (عمومی)
پیش نمایش صفحه اول مقاله
Neuroprotection induced by N-acetylcysteine against cytosolic glutathione depletion-induced Ca2+ influx in dorsal root ganglion neurons of mice: Role of TRPV1 channels
چکیده انگلیسی


• TRPV1 currents and Ca2+ influx values in GSH depleted dorsal root ganglion (DRG) were increased compared with controls.
• However, N-acetylcysteine (NAC) supplementation modulated the values.
• The study is the first to compare treatment with NAC to TRPV1 channels in the neurons.

Glutathione (GSH) and N-acetylcysteine (NAC) are thiol-containing antioxidants, and also act through a direct reaction with free radicals. Transient receptor potential vanilloid 1 (TRPV1) is the principal transduction channel serving as a polymodal detector. Despite the importance of oxidative stress in pain sensitivity, its role in TRPV1 modulation is poorly understood. NAC may also have a regulator role on TRPV1 channel activity in the dorsal root ganglion (DRG) neuron. Therefore, we tested the effects of GSH and NAC on TRPV1 channel current, Ca2+ influx, oxidative stress and caspase activity in the DRG of mice.DRG neurons were freshly isolated from mice and the neurons were incubated for 6 and 24 h with buthionine sulfoximine (BSO). Pretreatment of cultured DRG neurons with NAC, results in a protection against oxidative damages. This neuroprotection is associated with the attenuation of a Ca2+ influx triggered by oxidative agents such as H2O2, 5,5′-dithiobis-(2-nitrobenzoic acid) and GSH depletion via BSO. Here, we demonstrate the contribution of cytosolic factors (related to thiol group depletion) on the activation of TRPV1 channels in this mechanism. TRPV1 channels are activated by various agents including capsaicin (CAP), the pungent component of hot chili peppers, and are blocked by capsazepine. An oxidative environment also increased CAP-evoked TRPV1 currents in the neurons. When NAC and GSH were included in the patch pipette as well as extracellularly in the chamber, TRPV1 channels were not activated by CAP and H2O2. TRPV1 inhibitors, 2-aminoethyl diphenylborinate and N-(p-amylcinnamoyl)anthranilic acid strongly reduced BSO-induced oxidative toxicity and Ca2+ influx, in a manner similar to pretreatment with NAC and GSH. Caspase-3 and -9 activities of all groups were not changed by the agonists or antagonists.In conclusion, in our experimental model, TRPV1 channels are involved in the oxidative stress-induced neuronal death, and negative modulation of this channel activity by GSH and NAC pretreatment may account for their neuroprotective activity against oxidative stress.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neuroscience - Volume 242, 9 July 2013, Pages 151–160
نویسندگان
, , ,