کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4338679 | 1614877 | 2011 | 15 صفحه PDF | دانلود رایگان |

Protein aggregation is the major pathological hallmark seen in neurodegenerative disorders such as Parkinson's disease (PD). Alpha-synuclein (αS) is the main component of protein aggregates that form Lewy bodies (LBs) in PD and dementia with LBs. There have been several attempts to intervene in the process of expression, modification, clearance, and aggregation of αS as a therapeutic strategy toward neuroprotection. In this study, we have employed a novel, predictive, system level approach in silico to study four different strategies of anti-aggregation therapies: (a) reduction in αS modifications such as phosphorylation, nitration, or truncation in an approach called “seed clearance;” (b) “anti-oligomerization” approach through blocking the early oligomers formation; (c) “oligomers clearance” process by increasing its lysosomal degradation; and (d) “anti-aggregation” that involves prevention of aggregate formation at a later stage. These strategies were tested in a virtual dopaminergic neuronal system triggered by overexpression (OE) of mutant αS-A53T with or without rotenone (Rot)-induced oxidative stress. The results were compared by analyzing markers related to various end points such as oxidative stress, dopamine (DA) metabolism, proteasome function, survival and apoptosis. The experimental system and anti-oligomerization strategies were recapitulated in vitro in M17 dopaminergic cells overexpressing mutant αS-A53T triggered with Cu(II)-mediated oxidative stress, and the experimental data prospectively corroborated with the predictive results. Through this analysis, we found that intervention in the early part of the aggregation pathway by prevention of oligomer formation and increased clearance is indeed a good neuroprotective strategy, whereas anti-aggregation efforts to break up the aggregate at later stages has negative effects on the system.
▶Protein aggregation by α-synuclein (αS) is implicated in neurodegeneration associated with Parkinson's disease. ▶In silico model of dopaminergic neuron triggered by αS aggregation and Rotenone-induced oxidative damage was studied. ▶Early events including seed clearance and oligomerization of αS were critical for neurotoxicity. ▶Therapeutic intervention showed that early stage inhibition of αS aggregation was neuroprotective in silico. ▶In vitro an early stage inhibitor (ASI1D) showed neuroprotection on A53T αS expressing M17 cells treated with Cu(II).
Journal: Neuroscience - Volume 199, 29 December 2011, Pages 303–317