کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
433877 689645 2015 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Self-organizing flows in social networks
ترجمه فارسی عنوان
خود سازماندهی جریان در شبکه های اجتماعی
کلمات کلیدی
تشکیل شبکه خود سازمان، بودجه توجه، قیمت هرج و مرج، فیلتر کردن اجتماعی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
چکیده انگلیسی

Social networks offer users new means of accessing information, essentially relying on “social filtering”, i.e. propagation and filtering of information by social contacts. The sheer amount of data flowing in these networks, combined with the limited budget of attention of each user, makes it difficult to ensure that social filtering brings relevant content to interested users. Our motivation in this paper is to measure to what extent self-organization of a social network results in efficient social filtering.To this end we introduce flow games, a simple abstraction that models network formation under selfish dynamics, featuring user-specific interests and budget of attention. In the context of homogeneous user interests, we show that selfish dynamics converge to a stable network structure (namely a pure Nash equilibrium) with close-to-optimal information dissemination. We show that, in contrast, for the more realistic case of heterogeneous interests, selfish dynamics may lead to information dissemination that can be arbitrarily inefficient, as captured by an unbounded “price of anarchy”.Nevertheless the situation differs when user interests exhibit a particular structure, captured by a metric space with low doubling dimension. In that case, natural autonomous dynamics converge to a stable configuration. Moreover, users obtain all the information of interest to them in the corresponding dissemination, provided their budget of attention is logarithmic in the size of their interest set.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Theoretical Computer Science - Volume 584, 13 June 2015, Pages 3–18
نویسندگان
, , ,