کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4341788 1295846 2008 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Spatial association of prolyl oligopeptidase, inositol 1,4,5-triphosphate type 1 receptor, substance P and its neurokinin-1 receptor in the rat brain: An immunohistochemical colocalization study
موضوعات مرتبط
علوم زیستی و بیوفناوری علم عصب شناسی علوم اعصاب (عمومی)
پیش نمایش صفحه اول مقاله
Spatial association of prolyl oligopeptidase, inositol 1,4,5-triphosphate type 1 receptor, substance P and its neurokinin-1 receptor in the rat brain: An immunohistochemical colocalization study
چکیده انگلیسی

Prolyl oligopeptidase (POP) is a serine endopeptidase which hydrolyzes proline-containing peptides shorter than 30 amino acids. It has been suggested that POP is associated with cognitive functions, possibly via the cleavage of neuropeptides such as substance P (SP). Recently, several studies have also linked POP to the inositol 1,4,5-triphosphate (IP3) signaling. However, the neuroanatomical interactions between these substances are not known. We used double-labeled immunofluorescence to determine the POP colocalization with SP, SP receptor (neurokinin-1 receptor, NK-1R) and IP3 type 1 receptor (IP3R1) in the rat brain. Furthermore, since striatal and cortical GABAergic neurons are involved in SP neurotransmission, we studied the coexpression of POP, SP and GABA by triple-labeled immunofluorescence. POP was moderately present in IP3R1-containing cells in cortex; the colocalization was particularly high in the thalamus, hippocampal CA1 field and cerebellar Purkinje cells. Colocalization of POP with SP and NK1-receptor was infrequent throughout the brain, though some POP and SP coexpression was observed in cerebellar Purkinje cells. We also found that POP partially colocalized with SP-containing GABAergic neurons in striatum and cortex. Our findings support the view that POP is at least spatially associated with the IP3-signaling in the thalamus, hippocampus and cerebellar Purkinje cells. This might point to a role for POP in the regulation of long-term potentiation and/or depression. Moreover, the low degree of colocalization of POP, SP and its NK-1R suggests that a transport system is needed either for POP or SP to make hydrolysis possible and that POP may act both intra- and extracellularly.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neuroscience - Volume 153, Issue 4, 2 June 2008, Pages 1177–1189
نویسندگان
, , , ,