کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
434546 689754 2013 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Satisfiability of acyclic and almost acyclic CNF formulas
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Satisfiability of acyclic and almost acyclic CNF formulas
چکیده انگلیسی

We show that the Satisfiability (SAT) problem for CNF formulas with β-acyclic hypergraphs can be solved in polynomial time by using a special type of Davis–Putnam resolution in which each resolvent is a subset of a parent clause. We extend this class to CNF formulas for which this type of Davis–Putnam resolution still applies and show that testing membership in this class is NP-complete. We compare the class of β-acyclic formulas and this superclass with a number of known polynomial formula classes. We then study the parameterized complexity of SAT for “almost” β-acyclic instances, using as parameter the formula’s distance from being β-acyclic. As distance we use the size of a smallest strong backdoor set and the β-hypertree width. As a by-product we obtain the W[1]-hardness of SAT parameterized by the (undirected) clique-width of the incidence graph, which disproves a conjecture by Fischer, Makowsky, and Ravve.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Theoretical Computer Science - Volume 481, 15 April 2013, Pages 85-99