کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
434751 689794 2013 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Learning probabilistic automata: A study in state distinguishability
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Learning probabilistic automata: A study in state distinguishability
چکیده انگلیسی

Known algorithms for learning PDFA can only be shown to run in time polynomial in the so-called distinguishability μ of the target machine, besides the number of states and the usual accuracy and confidence parameters. We show that the dependence on μ is necessary in the worst case for every algorithm whose structure resembles existing ones. As a technical tool, a new variant of Statistical Queries termed -queries is defined. We show how to simulate -queries using classical Statistical Queries and show that known PAC algorithms for learning PDFA are in fact statistical query algorithms. Our results include a lower bound: every algorithm to learn PDFA with queries using a reasonable tolerance must make Ω(1/μ1−c) queries for every c>0. Finally, an adaptive algorithm that PAC-learns w.r.t. another measure of complexity is described. This yields better efficiency in many cases, while retaining the same inevitable worst-case behavior. Our algorithm requires fewer input parameters than previously existing ones, and has a better sample bound.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Theoretical Computer Science - Volume 473, 18 February 2013, Pages 46-60