کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
434906 689829 2012 34 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The complexity of approximately counting stable matchings
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
The complexity of approximately counting stable matchings
چکیده انگلیسی

We investigate the complexity of approximately counting stable matchings in the k-attribute model, where the preference lists are determined by dot products of “preference vectors” with “attribute vectors”, or by Euclidean distances between “preference points “and “attribute points”. Irving and Leather (1986) [14], proved that counting the number of stable matchings in the general case is #P-complete. Counting the number of stable matchings is reducible to counting the number of downsets in a (related) partial order [14], and is interreducible, in an approximation-preserving sense, to a class of problems that includes counting the number of independent sets in a bipartite graph (#BIS) (Dyer et al. (2004) [6]). It is conjectured that no FPRAS exists for this class of problems. We show this approximation-preserving interreducibility remains even in the restricted k-attribute setting when k≥3 (dot products) or k≥2 (Euclidean distances). Finally, we show it is easy to count the number of stable matchings in the 1-attribute dot-product setting.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Theoretical Computer Science - Volume 437, 15 June 2012, Pages 35-68