کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
435003 | 689849 | 2011 | 11 صفحه PDF | دانلود رایگان |

The H-Minor containment problem asks whether a graph G contains some fixed graph H as a minor, that is, whether H can be obtained by some subgraph of G after contracting edges. The derivation of a polynomial-time algorithm for H-Minor containment is one of the most important and technical parts of the Graph Minor Theory of Robertson and Seymour and it is a cornerstone for most of the algorithmic applications of this theory. H-Minor containment for graphs of bounded branchwidth is a basic ingredient of this algorithm. The currently fastest solution to this problem, based on the ideas introduced by Robertson and Seymour, was given by Hicks in [I.V. Hicks, Branch decompositions and minor containment, Networks 43 (1) (2004) 1–9], providing an algorithm that in time O(3k2⋅(h+k−1)!⋅m) decides if a graph G with m edges and branchwidth k, contains a fixed graph H on h vertices as a minor. In this work we improve the dependence on k of Hicks’ result by showing that checking if H is a minor of G can be done in time O(2(2k+1)⋅logk⋅h2k⋅22h2⋅m). We set up an approach based on a combinatorial object called rooted packing, which captures the properties of the subgraphs of H that we seek in our dynamic programming algorithm. This formulation with rooted packings allows us to speed up the algorithm when G is embedded in a fixed surface, obtaining the first algorithm for minor containment testing with single-exponential dependence on branchwidth. Namely, it runs in time 2O(k)⋅h2k⋅2O(h)⋅n, with n=∣V(G)∣. Finally, we show that slight modifications of our algorithm permit to solve some related problems within the same time bounds, like induced minor or contraction containment.
Journal: Theoretical Computer Science - Volume 412, Issue 50, 25 November 2011, Pages 7018-7028