کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
435120 689870 2011 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Recursive definitions and fixed-points on well-founded structures
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Recursive definitions and fixed-points on well-founded structures
چکیده انگلیسی

An expression such as ∀x(P(x)↔ϕ(P)), where P occurs in ϕ(P), does not always define P. When such an expression implicitly defines P, in the sense of Beth (1953) [1], and Padoa (1900) [13], , we call it a recursive definition. In the Least Fixed-Point Logic (LFP), we have theories where interesting relations can be recursively defined (Ebbinghaus, 1995 [4], , Libkin, 2004 [12], ). We will show that for some sorts of recursive definitions there are explicit definitions on sufficiently strong theories of LFP. It is known that LFP, restricted to finite models, does not have Beth’s Definability Theorem (Gurevich, 1996 [7], , Hodkinson, 1993 [8], , Dawar, 1995 [3]). Beth’s Definability Theorem states that, if a relation is implicitly defined, then there is an explicit definition for it. We will also give a proof that Beth’s Definability Theorem fails for LFP without this finite model restriction. We will investigate fragments of LFP for which Beth’s Definability Theorem holds, specifically theories whose models are well-founded structures.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Theoretical Computer Science - Volume 412, Issue 37, 26 August 2011, Pages 4893-4904