کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
435218 | 689882 | 2011 | 10 صفحه PDF | دانلود رایگان |

Deciding whether a graph can be embedded in a grid using only unit-length edges is NP-complete, even when restricted to binary trees. However, it is not difficult to devise a number of graph classes for which the problem is polynomial, even trivial. A natural step, outstanding thus far, was to provide a broad classification of graphs that make for polynomial or NP-complete instances. We provide such a classification based on the set of allowed vertex degrees in the input graphs, yielding a full dichotomy on the complexity of the problem. As byproducts, the previous NP-completeness result for binary trees was strengthened to strictly binary trees, and the three-dimensional version of the problem was for the first time proven to be NP-complete. Our results were made possible by introducing the concepts of consistent orientations and robust gadgets, and by showing how the former allows NP-completeness proofs by local replacement even in the absence of the latter.
Journal: Theoretical Computer Science - Volume 412, Issue 22, 13 May 2011, Pages 2370-2379