کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
43559 45977 2008 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Fischer–Tropsch synthesis: A review of water effects on the performances of unsupported and supported Co catalysts
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی کاتالیزور
پیش نمایش صفحه اول مقاله
Fischer–Tropsch synthesis: A review of water effects on the performances of unsupported and supported Co catalysts
چکیده انگلیسی

Fischer–Tropsch synthesis (FTS) process aims at converting synthesis gas to liquid fuels. Due to high activity and long catalyst life, cobalt-based catalyst is currently the catalyst of choice for gas to liquid (GTL) technology. Water is most undesirable byproduct of FTS process. Due to low water–gas-shift (WGS) activity of cobalt-based catalyst, the water concentration rises with time-on-stream (TOS) in FTS. This paper reviews the effects of water on the performances of various cobalt catalysts for FTS. The effects of water on FTS is quite complex and depends on the support and its nature, Co metal loading, its promotion with noble metals, and preparation procedure. Added water up to certain concentrations has positive effects (in terms of higher CO conversion, C5+ selectivity, olefin selectivity and lower methane and CO2 selectivity) on unsupported cobalt oxide catalysts. If the effects of support are taken into account, water has positive effect for silica-supported catalysts. The effects are negative for alumina where as for titania support, water has little positive effect. However in general, oxidation of cobalt active site depending on the cluster size and water partial pressure, the removal of transport restrictions via the formation of water-rich intra-pellet liquids, and kinetic effects have been considered as the main responsible factors. The effects are strongly influenced by the cobalt cluster size as well as on pore size of the support. Addition of noble metals at low cobalt loading increases the dispersion of cobalt on the support and hence improves its activity. Higher cobalt dispersion enhances the negative impact of water especially at higher water partial pressures under FTS conditions.

Water is most undesirable byproduct from the Fischer–Tropsch synthesis (FTS). Due to low water–gas-shift (WGS) activity of cobalt-based catalyst, the water concentration rises with time-on-stream (TOS) in FTS. This paper reviews the effects of water on the performances of various unsupported and supported cobalt catalysts for FTS. In general, oxidation of cobalt active site depending on the cluster size and water partial pressure, the removal of transport restrictions via the formation of water-rich intra-pellet liquids, and kinetic effects have been considered as the main responsible factors.Figure optionsDownload as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Catalysis A: General - Volume 348, Issue 1, 30 September 2008, Pages 1–15
نویسندگان
, ,