کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
435608 689919 2015 17 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Constrained floorplans in 2D and 3D
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Constrained floorplans in 2D and 3D
چکیده انگلیسی

A rectilinear dual of a plane graph refers to a partition of a rectangular area into nonoverlapping rectilinear polygonal modules, where each module corresponds to a vertex such that two modules have a side-contact iff their corresponding vertices are adjacent. An interesting observation is that most algorithms yielding low polygonal complexity rectilinear duals require the use of ⊤-shape modules or their extensions. To justify the intuition that ⊤-shape modules are more powerful than other 8-sided modules, we show the optimum polygonal complexity of ⊤-free rectilinear duals to be exactly 12. Our construction uses only monotone staircase modules. We continue this line of research by studying polygonal complexity and area-universality of rectilinear duals using modules of constrained shapes.Motivated by the design challenges in 3D IC technology, we also study the generalization of rectilinear duals in three dimensions by allowing each module to be an orthogonal polyhedron. Such a generalization to three dimensions opens the door for non-planar graphs to be accommodated in floorplan design. In particular, we prove that all chordal graphs admit 3D floorplans, which parallels the well-known result that all maximal plane graphs admit rectilinear duals.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Theoretical Computer Science - Volume 607, Part 3, 23 November 2015, Pages 320–336
نویسندگان
, ,