کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
435634 689921 2008 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Stable normal forms for polynomial system solving
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Stable normal forms for polynomial system solving
چکیده انگلیسی

The paper describes and analyzes a method for computing border bases of a zero-dimensional ideal I. The criterion used in the computation involves specific commutation polynomials, and leads to an algorithm and an implementation extending the ones in [B. Mourrain, Ph. Trébuchet, Generalised normal forms and polynomial system solving, in: M. Kauers (Ed.), Proc. Intern. Symp. on Symbolic and Algebraic Computation, ACM Press, New-York, 2005, pp. 253–260]. This general border basis algorithm weakens the monomial ordering requirement for Gröbner bases computations. It is currently the most general setting for representing quotient algebras, embedding into a single formalism Gröbner bases, Macaulay bases and a new representation that does not fit into the previous categories. With this formalism, we show how the syzygies of the border basis are generated by commutation relations. We also show that our construction of normal form is stable under small perturbations of the ideal, if the number of solutions remains constant. This feature has a huge impact on practical efficiency, as illustrated by the experiments on classical benchmark polynomial systems, at the end of the paper.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Theoretical Computer Science - Volume 409, Issue 2, 17 December 2008, Pages 229-240