کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
435639 689921 2008 19 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Complexity of real root isolation using continued fractions
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Complexity of real root isolation using continued fractions
چکیده انگلیسی

In this paper, we provide polynomial bounds on the worst case bit-complexity of two formulations of the continued fraction algorithm. In particular, for a square-free integer polynomial of degree n with coefficients of bit-length L, we show that the bit-complexity of Akritas’ formulation is , and the bit-complexity of a formulation by Akritas and Strzeboński is ; here indicates that we are omitting logarithmic factors. The analyses use a bound by Hong to compute the floor of the smallest positive root of a polynomial, which is a crucial step in the continued fraction algorithm. We also propose a modification of the latter formulation that achieves a bit-complexity of .

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Theoretical Computer Science - Volume 409, Issue 2, 17 December 2008, Pages 292-310