کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
435923 689951 2008 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Completing circular codes in regular submonoids
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Completing circular codes in regular submonoids
چکیده انگلیسی

Let M be an arbitrary submonoid of the free monoid A∗, and let X⊆M be a variable length code (for short a code). X is weakly M-complete iff any word in M is a factor of some word in X∗ [J. Néraud, C. Selmi, Free monoid theory: Maximality and completeness in arbitrary submonoids, Internat. J. Algebra Comput. 13 (5) (2003) 507–516]. Given a regular submonoid M, and given an arbitrary code X⊆M, we are interested in the existence of a weakly M-complete code that contains X. Actually, in [J. Néraud, Completing a code in a regular submonoid, in: Acts of MCU’2004, Lect. Notes Comput. Sci. 3354 (2005) 281–291; J. Néraud, Completing a code in a submonoid of finite rank, Fund. Inform. 74 (2006) 549–562], by presenting a general formula, we have established that, in any case, such a code exists. In the present paper, we prove that any regular circular code X⊆M may be embedded into a weakly M-complete one iff the minimal automaton with behavior M has a synchronizing word. As a consequence of our result an extension of the famous theorem of Schützenberger is stated for regular circular codes in the framework of regular submonoids. We study also the behaviour of the subclass of uniformly synchronous codes in connection with these questions.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Theoretical Computer Science - Volume 391, Issues 1–2, 4 February 2008, Pages 90-98