کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
435935 689952 2009 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Minimum leaf out-branching and related problems
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Minimum leaf out-branching and related problems
چکیده انگلیسی

Given a digraph D, the Minimum Leaf Out-Branching problem (MinLOB) is the problem of finding in D an out-branching with the minimum possible number of leaves, i.e., vertices of out-degree 0. We prove that MinLOB is polynomial-time solvable for acyclic digraphs. In general, MinLOB is NP-hard and we consider three parameterizations of MinLOB. We prove that two of them are NP-complete for every value of the parameter, but the third one is fixed-parameter tractable (FPT). The FPT parameterization is as follows: given a digraph D of order n and a positive integral parameter k, check whether D contains an out-branching with at most n−k leaves (and find such an out-branching if it exists). We find a problem kernel of order O(k2) and construct an algorithm of running time O(2O(klogk)+n6), which is an ‘additive’ FPT algorithm. We also consider transformations from two related problems, the minimum path covering and the maximum internal out-tree problems into MinLOB, which imply that some parameterizations of the two problems are FPT as well.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Theoretical Computer Science - Volume 410, Issue 45, 28 October 2009, Pages 4571-4579