کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
436104 689971 2009 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Combinatorial and spectral aspects of nearest neighbor graphs in doubling dimensional and nearly-Euclidean spaces
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Combinatorial and spectral aspects of nearest neighbor graphs in doubling dimensional and nearly-Euclidean spaces
چکیده انگلیسی

Miller, Teng, Thurston, and Vavasis proved a geometric separator theorem which implies that the k-nearest neighbor graph (k-NNG) of every set of n points in Rd has a balanced vertex separator of size O(n1−1/dk1/d). Spielman and Teng then proved that the Fiedler value — the second smallest eigenvalue of the Laplacian matrix — of the k-NNG of any n points in Rd is O((k/n)2/d). In this paper, we extend these two results to nearest neighbor graphs in a metric space with a finite doubling dimension and in a metric space that is nearly-Euclidean. We prove that for every l>0, if forms a metric space with doubling dimension γ, then the k-NNG of every set P of n points in X has a vertex separator of size , where L and S are, respectively, the maximum and minimum distances between any two points in P. We show how to use the singular value decomposition method to approximate a k-NNG in a nearly-Euclidean space by a Euclidean k-NNG. This approximation enables us to obtain an upper bound on the Fiedler value of k-NNGs in a nearly-Euclidean space.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Theoretical Computer Science - Volume 410, Issue 11, 6 March 2009, Pages 1081-1092