کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
436366 689996 2008 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
An improved lower bound for approximating minimum GCD multiplier in ℓ∞ norm ()
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
An improved lower bound for approximating minimum GCD multiplier in ℓ∞ norm ()
چکیده انگلیسی

In this paper, we study the inapproximability of the following NP-complete number theoretic optimization problems introduced by Rössner and Seifert [C. Rössner, J.P. Seifert, The complexity of approximate optima for greatest common divisor computations, in: Proceedings of the 2nd International Algorithmic Number Theory Symposium, ANTS-II, 1996, pp. 307–322]:Given n numbers , find an ℓ∞-minimum GCD multiplier for a1,…,an, i.e., a vector with minimum max1≤i≤n|xi| satisfying .We show that assuming , it is NP-hard to approximate the Minimum GCD Multiplier in ℓ∞ norm () within a factor nc/loglogn for some constant c>0 where n is the dimension of the given vector. This improves on the best previous result. The best result so far gave 2(logn)1−ϵ factor hardness by Rössner and Seifert [C. Rössner, J.P. Seifert, The complexity of approximate optima for greatest common divisor computations, in: Proceedings of the 2nd International Algorithmic Number Theory Symposium, ANTS-II, 1996, pp. 307–322], where ϵ>0 is an arbitrarily small constant.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Theoretical Computer Science - Volume 396, Issues 1–3, 10 May 2008, Pages 1-9