کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
436456 | 690005 | 2006 | 9 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Complexity of hyperconcepts
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In machine-learning, maximizing the sample margin can reduce the learning generalization error. Samples on which the target function has a large margin (γ) convey more information since they yield more accurate hypotheses. Let X be a finite domain and S denote the set of all samples S⊆X of fixed cardinality m. Let H be a class of hypotheses h on X. A hyperconcept h′ is defined as an indicator function for a set A⊆S of all samples on which the corresponding hypothesis h has a margin of at least γ. An estimate on the complexity of the class H′ of hyperconcepts h′ is obtained with explicit dependence on γ, the pseudo-dimension of H and m.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Theoretical Computer Science - Volume 363, Issue 1, 25 October 2006, Pages 2-10
Journal: Theoretical Computer Science - Volume 363, Issue 1, 25 October 2006, Pages 2-10