کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
436456 690005 2006 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Complexity of hyperconcepts
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Complexity of hyperconcepts
چکیده انگلیسی

In machine-learning, maximizing the sample margin can reduce the learning generalization error. Samples on which the target function has a large margin (γ) convey more information since they yield more accurate hypotheses. Let X be a finite domain and S denote the set of all samples S⊆X of fixed cardinality m. Let H be a class of hypotheses h on X. A hyperconcept h′ is defined as an indicator function for a set A⊆S of all samples on which the corresponding hypothesis h has a margin of at least γ. An estimate on the complexity of the class H′ of hyperconcepts h′ is obtained with explicit dependence on γ, the pseudo-dimension of H and m.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Theoretical Computer Science - Volume 363, Issue 1, 25 October 2006, Pages 2-10