کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
436494 | 690009 | 2013 | 25 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A study of Jacobi–Perron boundary words for the generation of discrete planes
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The construction of a Sturmian word, and thus of a discrete line, from a continued fraction development generalizes to higher dimensions. Given any vector v∈R3, a list of 6-connected points approximating the line defined by v may be obtained via a generalized continued fraction algorithm. By duality, a discrete plane with normal vector v can also be generated using a related technique. We focus on such discrete planes, more precisely on the finite patterns generated at each step of the process. We show that the choice of the Jacobi–Perron algorithm as a higher dimension generalization of Euclid’s algorithm together with the specific substitutions deduced from it allows us to guaranty the simple connectedness of those patterns.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Theoretical Computer Science - Volume 502, 2 September 2013, Pages 118-142
Journal: Theoretical Computer Science - Volume 502, 2 September 2013, Pages 118-142