کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
436578 | 690016 | 2008 | 14 صفحه PDF | دانلود رایگان |

We consider computational complexity questions related to parallel knock-out schemes for graphs. In such schemes, in each round, each remaining vertex of a given graph eliminates exactly one of its neighbours. We show that the problem of whether, for a given bipartite graph, such a scheme can be found that eliminates every vertex is NP-complete. Moreover, we show that, for all fixed positive integers k≥2, the problem of whether a given bipartite graph admits a scheme in which all vertices are eliminated in at most (exactly) k rounds is NP-complete. For graphs with bounded tree-width, however, both of these problems are shown to be solvable in polynomial time. We also show that r-regular graphs with r≥1, factor-critical graphs and 1-tough graphs admit a scheme in which all vertices are eliminated in one round.
Journal: Theoretical Computer Science - Volume 393, Issues 1–3, 20 March 2008, Pages 182-195