کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
436603 690018 2013 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Improved algorithms for the farthest colored Voronoi diagram of segments
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Improved algorithms for the farthest colored Voronoi diagram of segments
چکیده انگلیسی

Given n line segments in a plane with each colored by one of k colors, the farthest colored Voronoi diagram (FCVD) is a subdivision of the plane such that the region of a c-colored site (segment or subsegment) s contains all points of the plane for which c is the farthest color and s is the nearest c-colored site. The FCVD is a generalization of the farthest Voronoi diagram (i.e., k=n) and the regular Voronoi diagram (i.e., k=1). In this paper, we first present a simple algorithm to solve the general FCVD problem in an output-sensitive fashion in O((kn+I)α(H)logn) time, where I is the number of intersections of the input and H is the complexity of the FCVD. We then focus on a special case, called the farthest-polygon Voronoi diagram (FPVD), in which all colored segments form k disjoint polygonal structures (i.e., simple polygonal curves or polygons) with each consisting of segments with the same color. For the FPVD, we present an improved algorithm with a running time of O(nlog2n). Our algorithm has better performance and is simpler than the best previously known O(nlog3n)-time algorithm.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Theoretical Computer Science - Volume 497, 29 July 2013, Pages 20-30