کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
436655 690021 2007 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On the hardness of minimizing space for all-shortest-path interval routing schemes
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
On the hardness of minimizing space for all-shortest-path interval routing schemes
چکیده انگلیسی

k-Interval Routing Scheme (k-IRS) is a compact routing method that allows up to k interval labels to be assigned to an arc; and global k-IRS allows not more than a total of k interval labels in the whole network. A fundamental problem is to characterize the networks that admit k-IRS (or global k-IRS). Many of the problems related to single-shortest-path k-IRS have already been shown to be NP-complete. For all-shortest-path k-IRS, the characterization problem remains open for k⩾1. In this paper, we study the time complexity of devising minimal-space all-shortest-path k-IRSs and show that it is NP-complete to decide whether a graph admits an all-shortest-path k-IRS, for every integer k⩾3, and so is that of deciding whether a graph admits an all-shortest-path k-strict IRS, for every integer k⩾4. These are the first NP-completeness results for all-shortest-path k-IRS where k is a constant and the graph is unweighted. The NP-completeness holds also for the linear case. We also prove that it is NP-complete to decide whether an unweighted graph admits an all-shortest-path IRS with global compactness of at most k, which also holds for the linear and strict cases.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Theoretical Computer Science - Volume 389, Issues 1–2, 10 December 2007, Pages 250-264