کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
436816 690041 2007 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On the spanning connectivity and spanning laceability of hypercube-like networks
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
On the spanning connectivity and spanning laceability of hypercube-like networks
چکیده انگلیسی

Let u and v be any two distinct nodes of an undirected graph G, which is k-connected. For 1≤w≤k, a w-container C(u,v) of a k-connected graph G is a set of w-disjoint paths joining u and v. A w-container C(u,v) of G is a w∗-container if it contains all the nodes of G. A graph G is w∗-connected if there exists a w∗-container between any two distinct nodes. A bipartite graph G is w∗-laceable if there exists a w∗-container between any two nodes from different parts of G. Let G0=(V0,E0) and G1=(V1,E1) be two disjoint graphs with |V0|=|V1|. Let E={(v,ϕ(v))∣v∈V0,ϕ(v)∈V1, and ϕ:V0→V1 is a bijection}. Let G=G0⊕G1=(V0∪V1,E0∪E1∪E). The set of n-dimensional hypercube-like graph is defined recursively as (a) , K2= complete graph with two nodes, and (b) if G0 and G1 are in , then G=G0⊕G1 is in . Let and G is bipartite} and . In this paper, we show that every graph in is w∗-laceable for every w, 1≤w≤n. It is shown that a constructed -graph H can not be 4∗-connected. In addition, we show that every graph in is w∗-connected for every w, 1≤w≤3.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Theoretical Computer Science - Volume 381, Issues 1–3, 22 August 2007, Pages 218-229