کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
436946 690056 2006 19 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The complexity of membership problems for circuits over sets of integers
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
The complexity of membership problems for circuits over sets of integers
چکیده انگلیسی

We investigate the complexity of membership problems for -circuits computing sets of integers. These problems are a natural modification of the membership problems for circuits computing sets of natural numbers studied by McKenzie and Wagner [The complexity of membership problems for circuits over sets of natural numbers, Lecture Notes in Computer Science, Vol. 2607, 2003, pp. 571–582]. We show that there are several membership problems for which the complexity in the case of integers differs significantly from the case of the natural numbers: testing membership in the subset of integers produced at the output of a {∪,+,×}-circuit is NEXPTIME-complete, whereas it is PSPACE-complete for the natural numbers. As another result, evaluating {-,+}-circuits is shown to be P-complete for the integers and PSPACE-complete for the natural numbers. The latter result extends McKenzie and Wagner's work in nontrivial ways. Furthermore, evaluating {×}-circuits is shown to be NL∧⊕L-complete, and several other cases are resolved.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Theoretical Computer Science - Volume 369, Issues 1–3, 15 December 2006, Pages 211-229