کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
436948 690056 2006 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The degree distribution of the generalized duplication model
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
The degree distribution of the generalized duplication model
چکیده انگلیسی

We study and generalize the duplication model of Pastor-Satorras et al. [Evolving protein interaction networks through gene duplication, J. Theor. Biol. 222 (2003) 199–210]. This model generates a graph by iteratively “duplicating” a randomly chosen node as follows: we start at t0 with a fixed graph G(t0) of size t0. At each step t>t0 a new node vt is added. The node vt selects an existing node u from V(G(t-1))={v1,…,vt-1} uniformly at random (uar). The node vt then connects to each neighbor of the node u in G(t-1) independently with probability p. Additionally, vt connects uar to every node of V(G(t-1)) independently with probability r/t, and parallel edges are merged. Unlike other copy-based models, the degree of the node vt in this model is not fixed in advance; rather it depends strongly on the degree of the original node u it selected.Our main contributions are as follows: we show that (1) the duplication model of Pastor-Satorras et al. does not generate a truncated power-law degree distribution as stated in Pastor-Satorras et al. [Evolving protein interaction networks through gene duplication, J. Theor. Biol. 222 (2003) 199–210]. (2) The special case where r=0 does not give a power-law degree distribution as stated in Chung et al. [Duplication models for biological networks, J. Comput. Biol. 10 (2003) 677–687]. (3) We generalize the Pastor-Satorras et al. duplication process to ensure (if required) that the minimum degree of all vertices is positive. We prove that this generalized model has a power-law degree distribution.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Theoretical Computer Science - Volume 369, Issues 1–3, 15 December 2006, Pages 239-249