کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
437170 690086 2006 22 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Kolmogorov complexities Kmax, Kmin on computable partially ordered sets
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Kolmogorov complexities Kmax, Kmin on computable partially ordered sets
چکیده انگلیسی

We introduce a machine free mathematical framework to get a natural formalization of some general notions of infinite computation in the context of Kolmogorov complexity. Namely, the classes and of functions X→D which are pointwise maximum of partial or total computable sequences of functions where D=(D,<) is some computable partially ordered set. The enumeration theorem and the invariance theorem always hold for , leading to a variant of Kolmogorov complexity. We characterize the orders D such that the enumeration theorem (resp. the invariance theorem) also holds for . It turns out that may satisfy the invariance theorem but not the enumeration theorem. Also, when satisfies the invariance theorem then the Kolmogorov complexities associated to and are equal (up to a constant).Letting , where Drev is the reverse order, we prove that either (=ct is equality up to a constant) or are ⩽ct incomparable and and . We characterize the orders leading to each case. We also show that cannot be both much smaller than KD at any point.These results are proved in a more general setting with two orders on D, one extending the other.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Theoretical Computer Science - Volume 352, Issues 1–3, 7 March 2006, Pages 159-180