کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
437250 690094 2012 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Effectively approximating measurable sets by open sets
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Effectively approximating measurable sets by open sets
چکیده انگلیسی

We examine an effective version of the standard fact from analysis which says that, for any ε>0 and any Lebesgue-measurable subset of Cantor space, X⊆2ω, there is an open set , such that μ(Uε)≤μ(X)+ε, where μ(Z) denotes the Lebesgue measure of Z⊆2ω, that arises naturally in the context of algorithmic randomness.More specifically, our main result shows that for any given rational numbers 0≤ε<ε′≤1, and uniformly computably enumerable sequence {Un}n∈ω of -classes such that (∀n)[μ(Un)≤ε], there exists a -class, Y, such that Y⊇lim infnUn, and μ(Y)≤ε′. Moreover, Y can be obtained uniformly from ε,ε′, and a u.c.e. index for {Un}n∈ω. This answers a recent question of Bienvenu, Muchnik, Shen, and Vereshchagin. We also determine the truth-values of several modifications of our main result, showing that several similar, but stronger, statements are false.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Theoretical Computer Science - Volume 428, 13 April 2012, Pages 36-46