کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
437326 690115 2011 5 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The complexity of determining the rainbow vertex-connection of a graph
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
The complexity of determining the rainbow vertex-connection of a graph
چکیده انگلیسی

A vertex-colored graph is rainbow vertex-connected if any two vertices are connected by a path whose internal vertices have distinct colors, which was introduced by Krivelevich and Yuster. The rainbow vertex-connection of a connected graph G, denoted by rvc(G), is the smallest number of colors that are needed in order to make G rainbow vertex-connected. In this paper, we study the complexity of determining the rainbow vertex-connection of a graph and prove that computing rvc(G) is NP-Hard. Moreover, we show that it is already NP-Complete to decide whether rvc(G)=2. We also prove that the following problem is NP-Complete: given a vertex-colored graph G, check whether the given coloring makes G rainbow vertex-connected.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Theoretical Computer Science - Volume 412, Issue 35, 12 August 2011, Pages 4531-4535