کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
437326 | 690115 | 2011 | 5 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
The complexity of determining the rainbow vertex-connection of a graph
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
A vertex-colored graph is rainbow vertex-connected if any two vertices are connected by a path whose internal vertices have distinct colors, which was introduced by Krivelevich and Yuster. The rainbow vertex-connection of a connected graph G, denoted by rvc(G), is the smallest number of colors that are needed in order to make G rainbow vertex-connected. In this paper, we study the complexity of determining the rainbow vertex-connection of a graph and prove that computing rvc(G) is NP-Hard. Moreover, we show that it is already NP-Complete to decide whether rvc(G)=2. We also prove that the following problem is NP-Complete: given a vertex-colored graph G, check whether the given coloring makes G rainbow vertex-connected.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Theoretical Computer Science - Volume 412, Issue 35, 12 August 2011, Pages 4531-4535
Journal: Theoretical Computer Science - Volume 412, Issue 35, 12 August 2011, Pages 4531-4535