کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
437333 | 690115 | 2011 | 9 صفحه PDF | دانلود رایگان |

This paper establishes a workspace theorem in terms of regular-controlled (context-free) grammars. It proves that, if, for a regular-controlled grammar H, there is a positive integer k such that H generates every sentence y∈L(H) by a derivation in which every sentential form x contains at most (k−1)|x|/k occurrences of nonterminals that are erased throughout the rest of the derivation, where |x| denotes the length of x, then the language of H is generated by a propagating regular-controlled grammar. An analogical workspace theorem is demonstrated for regular-controlled grammars with appearance checking. The paper provides an algorithm that removes all erasing rules from any regular-controlled grammar (possibly with appearance checking) that satisfies the workspace condition above without affecting the generated language. In its conclusion, the paper points out a relationship of the workspace theorems to other areas of formal language theory.
Journal: Theoretical Computer Science - Volume 412, Issue 35, 12 August 2011, Pages 4604-4612