کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
437479 690146 2011 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Linear and sublinear time algorithms for the basis of abelian groups
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Linear and sublinear time algorithms for the basis of abelian groups
چکیده انگلیسی

It is well known that every finite abelian group G can be represented as a direct product of cyclic groups: G≅G1×G2×⋯×Gt, where each Gi is a cyclic group of order pj for some prime p and integer j≥1. If ai generates the cyclic group of Gi, i=1,2,…,t, then the elements a1,a2,…,at are called a basis of G. We show a randomized algorithm such that given a set of generators M={x1,…,xk} for an abelian group G and the prime factorization of order , it computes a basis of G in time, where n=|G| has prime factorization (which is not a part of input). This generalizes Buchmann and Schmidt’s algorithm that takes time. In another model, all elements in an abelian group are put into a list as a part of input. We obtain an O(n) time deterministic algorithm and a sublinear time randomized algorithm for computing a basis of an abelian group.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Theoretical Computer Science - Volume 412, Issue 32, 22 July 2011, Pages 4110-4122