کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
437515 690151 2011 18 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Positive expansiveness versus network dimension in symbolic dynamical systems
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Positive expansiveness versus network dimension in symbolic dynamical systems
چکیده انگلیسی

A symbolic dynamical system is a continuous transformation Φ:X⟶X of closed subset X⊆AV, where A is a finite set and V is countable (examples include subshifts, odometers, cellular automata, and automaton networks). The function Φ induces a directed graph (‘network’) structure on V, whose geometry reveals information about the dynamical system (X,Φ). The dimension dim(V) is an exponent describing the growth rate of balls in this network as a function of their radius. We show that, if X has positive entropy and dim(V)>1, and the system (AV,X,Φ) satisfies minimal symmetry and mixing conditions, then (X,Φ) cannot be positively expansive; this generalizes a well-known result of Shereshevsky about multidimensional cellular automata. We also construct a counterexample to a version of this result without the symmetry condition. Finally, we show that network dimension is invariant under topological conjugacies which are Hölder-continuous.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Theoretical Computer Science - Volume 412, Issue 30, 8 July 2011, Pages 3838-3855