کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
437557 690156 2011 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Complexity of clique coloring and related problems
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Complexity of clique coloring and related problems
چکیده انگلیسی

A k-clique-coloring of a graph G is an assignment of k colors to the vertices of G such that every maximal (i.e., not extendable) clique of G contains two vertices with different colors. We show that deciding whether a graph has a k-clique-coloring is -complete for every k≥2. The complexity of two related problems are also considered. A graph is k-clique-choosable, if for every k-list-assignment on the vertices, there is a clique coloring where each vertex receives a color from its list. This problem turns out to be -complete for every k≥2. A graph G is hereditary k-clique-colorable if every induced subgraph of G is k-clique-colorable. We prove that deciding hereditary k-clique-colorability is also -complete for every k≥3. Therefore, for all the problems considered in the paper, the obvious upper bound on the complexity turns out to be the exact class where the problem belongs.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Theoretical Computer Science - Volume 412, Issue 29, 1 July 2011, Pages 3487-3500