کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4377892 | 1617528 | 2008 | 14 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Predicting tree distributions in an East African biodiversity hotspot: model selection, data bias and envelope uncertainty
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
علوم زیستی و بیوفناوری
علوم کشاورزی و بیولوژیک
بوم شناسی، تکامل، رفتار و سامانه شناسی
پیش نمایش صفحه اول مقاله
چکیده انگلیسی
The Eastern Arc Mountains (EAMs) of Tanzania and Kenya support some of the most ancient tropical rainforest on Earth. The forests are a global priority for biodiversity conservation and provide vital resources to the Tanzanian population. Here, we make a first attempt to predict the spatial distribution of 40 EAM tree species, using generalised additive models, plot data and environmental predictor maps at sub 1Â km resolution. The results of three modelling experiments are presented, investigating predictions obtained by (1) two different procedures for the stepwise selection of predictors, (2) down-weighting absence data, and (3) incorporating an autocovariate term to describe fine-scale spatial aggregation. In response to recent concerns regarding the extrapolation of model predictions beyond the restricted environmental range of training data, we also demonstrate a novel graphical tool for quantifying envelope uncertainty in restricted range niche-based models (envelope uncertainty maps). We find that even for species with very few documented occurrences useful estimates of distribution can be achieved. Initiating selection with a null model is found to be useful for explanatory purposes, while beginning with a full predictor set can over-fit the data. We show that a simple multimodel average of these two best-model predictions yields a superior compromise between generality and precision (parsimony). Down-weighting absences shifts the balance of errors in favour of higher sensitivity, reducing the number of serious mistakes (i.e., falsely predicted absences); however, response functions are more complex, exacerbating uncertainty in larger models. Spatial autocovariates help describe fine-scale patterns of occurrence and significantly improve explained deviance, though if important environmental constraints are omitted then model stability and explanatory power can be compromised. We conclude that the best modelling practice is contingent both on the intentions of the analyst (explanation or prediction) and on the quality of distribution data; generalised additive models have potential to provide valuable information for conservation in the EAMs, but methods must be carefully considered, particularly if occurrence data are scarce. Full results and details of all species models are supplied in an online Appendix.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Ecological Modelling - Volume 218, Issues 1â2, 24 October 2008, Pages 121-134
Journal: Ecological Modelling - Volume 218, Issues 1â2, 24 October 2008, Pages 121-134
نویسندگان
Philip J. Platts, Colin J. McClean, Jon C. Lovett, Rob Marchant,