کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
437803 | 690185 | 2009 | 9 صفحه PDF | دانلود رایگان |

Given an instance of an optimization problem together with an optimal solution, we consider the scenario in which this instance is modified locally. In graph problems, e. g., a singular edge might be removed or added, or an edge weight might be varied, etc. For a problem U and such a local modification operation, let lm-U (local-modification-U) denote the resulting problem. The question is whether it is possible to exploit the additional knowledge of an optimal solution to the original instance or not, i. e.,whether lm-U is computationally more tractable than U. While positive examples are known e.g. for metric TSP, we give some negative examples here: Metric TSP with deadlines (time windows), if a single deadline or the cost of a single edge is modified, exhibits the same lower bounds on the approximability in these local-modification versions as those currently known for the original problem.
Journal: Theoretical Computer Science - Volume 410, Issues 21–23, 17 May 2009, Pages 2241-2249