کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
438000 | 690215 | 2008 | 6 صفحه PDF | دانلود رایگان |

We prove a superlinear lower bound on the size of a bounded depth bilinear arithmetical circuit computing cyclic convolution. Our proof uses the strengthening of the Donoho–Stark uncertainty principle [D.L. Donoho, P.B. Stark, Uncertainty principles and signal recovery, SIAM Journal of Applied Mathematics 49 (1989) 906–931] given by Tao [T. Tao, An uncertainty principle for cyclic groups of prime order, Mathematical Research Letters 12 (2005) 121–127], and a combinatorial lemma by Raz and Shpilka [R. Raz, A. Shpilka, Lower bounds for matrix product, in arbitrary circuits with bounded gates, SIAM Journal of Computing 32 (2003) 488–513]. This combination and an observation on ranks of circulant matrices, which we use to give a much shorter proof of the Donoho–Stark principle, may have other applications.
Journal: Theoretical Computer Science - Volume 409, Issue 3, 28 December 2008, Pages 617-622