کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
438180 690235 2008 27 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Polyhedra genus theorem and Euler formula: A hypermap-formalized intuitionistic proof
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Polyhedra genus theorem and Euler formula: A hypermap-formalized intuitionistic proof
چکیده انگلیسی

This article presents formalized intuitionistic proofs for the polyhedra genus theorem, the Euler formula and a sufficient condition of planarity. They are based on a hypermap model for polyhedra and on formal specifications in the Calculus of Inductive Constructions. First, a type of free maps is inductively defined from three atomic constructors. Next, a hierarchy of types defined by invariants, with operations constrained by preconditions, is built on the free maps: hypermaps, orientated combinatorial maps and a central notion of quasi-hypermaps. Besides, the proofs of their properties are established until the genus theorem and the Euler formula, mainly using a simple induction principle based on the free map term algebra. Finally, a constructive sufficient condition for polyhedra to be planar is set and proved. The whole process is assisted by the interactive Coq proof system.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Theoretical Computer Science - Volume 403, Issues 2–3, 28 August 2008, Pages 133-159