کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
438302 | 690254 | 2014 | 9 صفحه PDF | دانلود رایگان |

Let G be a simple graph in which each vertex v has a positive integer weight b(v) and each edge (v, w) has a nonnegative integer weight b(v, w). A bandwidth consecutive multicoloring of G assigns each vertex v a specified number b(v) of consecutive positive integers so that, for each edge (v, w), all integers assigned to vertex v differ from all integers assigned to vertex w by more than b(v, w). The maximum integer assigned to a vertex is called the span of the coloring. In the paper, we first investigate fundamental properties of such a coloring. We then obtain a pseudo polynomial-time exact algorithm and a fully polynomial-time approximation scheme for the problem of finding such a coloring of a given series-parallel graph with the minimum span. We finally extend the results to the case where a given graph G is a partial k-tree, that is, G has a bounded tree-width.
Journal: Theoretical Computer Science - Volume 532, 1 May 2014, Pages 64-72