کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
438396 | 690266 | 2008 | 4 صفحه PDF | دانلود رایگان |

An L(2,1)-labeling of a graph G is a function f from the vertex set V(G) to the set of all nonnegative integers such that |f(x)−f(y)|≥2 if d(x,y)=1 and |f(x)−f(y)|≥1 if d(x,y)=2, where d(x,y) denotes the distance between x and y in G. The L(2,1)-labeling number λ(G) of G is the smallest number k such that G has an L(2,1)-labeling with max{f(v):v∈V(G)}=k. Griggs and Yeh conjecture that λ(G)≤Δ2 for any simple graph with maximum degree Δ≥2. This paper considers the graph formed by the skew product and the converse skew product of two graphs with a new approach on the analysis of adjacency matrices of the graphs as in [W.C. Shiu, Z. Shao, K.K. Poon, D. Zhang, A new approach to the L(2,1)-labeling of some products of graphs, IEEE Trans. Circuits Syst. II: Express Briefs (to appear)] and improves the previous upper bounds significantly.
Journal: Theoretical Computer Science - Volume 400, Issues 1–3, 9 June 2008, Pages 230-233